
 
Concentrations appear linearly related to distance down-dip in an aquifer.  OLS regression 
shows the residuals to be of generally constant variance.  However, several outliers in the data 
set inflate the standard error, and what appears graphically as a strong linear relationship tests as 
being insignificant due to the outliers' influence.  How can a more robust linear fit be obtained 
which is not overly sensitive to a few outliers, and describes the linear relation between 
concentration and distance? 
 
A water supply intake is to be located in a stream so that water elevation (stage) is below the 
intake only 5 percent of the time.  Monitoring at the station is relatively recent, so OLS relating 
this and a nearby site having a 50 year record is used to generate a pseudo 50-year stage record 
for the intake station.  The 5th percentile of the pseudo record is used as the intake elevation.  
Given that OLS estimates are reduced in variance compared to actual data, this elevation 
estimate will not be as extreme as it should be.  What alternatives to OLS would provide better 
estimates? 
 
The mass of a radionuclide present within the aquifer of one county was computed by 
performing a regression of concentration versus log of the hydraulic conductivity measured at 20 
wells.  This equation was used to generate estimates at 100 locations of known hydraulic 
conductivity, which are then multiplied by the volumes of water, and summed.  However, the 
regression equation shows a marked increase in variance of concentration with increasing 
conductivity, even though the relationship is linear.  Transformations may produce a nonlinear 
relationship, with probable transformation bias.  An alternative to OLS is therefore required to 
account for heteroscedasticity without employing a transformation. 
 
Situations such as the above frequently arise where the assumptions of constant variance and 
normality of residuals required by OLS regression are not satisfied, and transformations to 
remedy this are either not possible, or not desirable.  In addition, the inherent reduction in 
variance of OLS estimates is not appropriate when extending records.  In these situations, 
alternative methods are better for fitting lines to data.  These include nonparametric rank-based 
methods, lines which minimize other than the squared residuals, and smooths. 

Chapter 10
Alternative Methods for Regression
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10.1   Kendall-Theil Robust Line 
 
The significance of a linear dependence between two continuous variables Y and X or their 
transforms may be tested by determining whether the regression slope coefficient for the 
explanatory variable is significantly different from zero.  This is equivalent to the test for 
significance of the linear correlation coefficient r between Y and X.  In a similar fashion, 
Kendall's rank correlation coefficient tau (see Chapter 8) may be used to test for any monotonic, 
not just linear, dependence of Y on X.  Related to tau is a robust nonparametric line applicable 
when Y is linearly related to X.  This line will not depend on the normality of residuals for 
validity of significance tests, and will not be strongly affected by outliers, in contrast to OLS 
regression.   
 
The robust estimate of slope for this nonparametric fitted line was first described by Theil 
(1950).  An estimate of intercept is also available (Conover, 1980, p. 267).  Together these define 
an estimate of a complete linear equation of the form:  
 Ŷ  = b0

^   + b1
^   • X 

This line is closely related to Kendall's tau, in that the significance of the test for  
H0: slope β1=0 is identical to the test for H0: tau=0. 
 
10.1.1   Computation of the Line 
The Theil slope estimate b1

^   is computed by comparing each data pair to all others in a pairwise 
fashion.  A data set of n (X,Y) pairs will result in n(n−1)/2 pairwise comparisons.  For each of 
these comparisons a slope ∆Y/∆X is computed (figure 10.1).  The median of all possible 
pairwise slopes is taken as the nonparametric slope estimate b1

^  .  
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Figure 10.1 A.  All possible pairwise slopes between six data points.   
 B.  All possible slopes rearranged to meet at a common origin 
 The thick line is the median of the 15 slopes. 
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 b1
^   = median 

(Yj - Yi)
 (Xj - Xi)  for all i < j  and i=1,2,...(n−1)   j=2,3,...n. [10.1] 

 
Example 1 
For example, given the following seven (X,Y) data pairs: 
 Y:  1 2 3 4 5 16 7 
 X: 1 2 3 4 5 6 7 
Slopes: +1 +1 +1 +1 +11 −9 There are (7)(6)/2 = 21 pair- 
 +1 +1 +1 +6 +1  wise slopes.  Comparing 
 +1 +1 +4.3 +1   points 2 and 1, slope = +1. 
 +1 +3.5 +1    Going down the column  
 +3 +1     under point 1, comparing 
  +1      points 3 and 1, slope = +1.  
For points 4 and 5 vs 1, slopes = +1.  Comparing points 6 and 1, slope = (15/5) = +3, etc.  
After computing all possible slopes, they are put into ascending order: 
 −9, +1, +1, +1 +1 +1 +1 +1 +1 +1 +1  
 +1 +1 +1 +1 +1 +3 +3.5 +4.3 +6 +11 
The median of these 21 values is the 11th smallest, or +1, so that b1

^   = +1. 
 
The intercept is defined as follows 
 b0

^   = Ymed − b1
^   • Xmed [10.2] 

where Xmed and Ymed are the medians of X and Y respectively.  This formula assures that the 
fitted line goes through the point (Xmed ,Ymed).  This is analogous to OLS, where the fitted line 
always goes through the point ( x , y ).  For the Example 1 data above, Xmed = 4 and Ymed= 4, 
so that b0

^   = 4 − 1•4 = 0. 
 
Other estimates of intercept have been suggested.  One is the median of all possible intercepts 
computed by solving the Kendall line using ˆ b 

1
and each data point (Dietz, 1989).  However, the 

estimate of intercept produced by placing the line through the data medians was found by Dietz 
to be efficient in the presence of outliers and non-normal residuals, while also being simple to 
compute.  It is the estimate recommended here, due to its robustness and efficiency, simplicity, 
and analogy to OLS.  
 
10.1.2   Properties of the Estimator 
OLS regression for the example 1 data would produce a slope b1 of 1.71.  This differs 
substantially from the Theil estimate b1

^   of 1, due to the strong effect on the regression slope of 
the one outlying Y value of 16.  This effect can be seen by changing the 6th Y value from 16 to 
6.  The regression slope would change from 1.71 to 1, but b1

^   would be unchanged.  Similarly, if 
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the data value were changed from 16 to 200, b1 would be greatly inflated while b1
^   would again 

remain at 1.  The estimator b1
^   is clearly resistant to outliers.  It responds to the bulk of the data. 

 
b1
^   is an unbiased estimator of the slope of a linear relationship, and b1 from OLS is also an 
unbiased estimator.  However, the variance of the estimators differ.  When the departures from 
the true linear relationship (true residuals) are normally distributed, OLS is slightly more efficient 
(has lower variance) than the Kendall-based line.  When residuals depart from normality (are 
skewed or prone to outliers), then b1

^   can be much more efficient than the OLS slope.  The 
efficiency of the Theil estimate to the OLS slope is the same as that for the Hodges-Lehmann 
estimator in comparison to the mean (Sen, 1968), as the Theil estimate is one of the class of 
Hodges-Lehmann estimators.  The Kendall-Theil line has the desirable properties of a 
nonparametric estimator: almost as "good" (efficient) as the parametric estimator when all 
assumptions of normality are met, and much better when those assumptions are not met. 
 
One commonly-asked question is "how much of a departure from a normal distribution is 
necessary before a nonparametric test has an advantage over its parametric counterpart?".  In 
the case of the Theil and OLS slope estimates, how non-normal must residuals be before the 
Theil estimate should be used?  Are there advantages even in cases where the departure from 
normality is so small that visual inspection of the data distribution, or formal tests of normality, 
are unlikely to provide evidence for the lack of normality?  Hirsch et al. (1991) tested the two 
slope estimators under one type of departure from normality, a mixture of two normal 
distributions.  The predominant distribution had a mean of 10 and a standard deviation of 1;  
the second distribution had a mean of 11 and a standard deviation of 3.  Figure 10.2 displays the 
two individual distributions and figure 10.3 displays a mixture of 95 percent from the first 
distribution and 5 percent from the second.  Visual examination of figure 10.3 reveals only the 
slightest departure from symmetry.  Given sampling variability that would exist in an actual data 
set it would be exceedingly unlikely that samples from this distribution would be identified as 
non-normal.  Figure 10.4 displays a more substantial departure from normality, a mixture of 80 
percent of the first distribution and 20 percent of the second.  There is a difference in the shape 
of the two tails of the distribution, but again the non-normality is not highly noticeable. 

Random samples were generated from each of several different mixture distributions containing 
between 0 and 20 percent of the second distribution.  Data from each mixture were treated as a 
separate response variable in a regression versus a random order x.  The true population slope is 
therefore zero.  Both OLS and the Theil slope estimators were computed, and their standard 
deviations around zero recorded as root mean square error (RMSE).  The results are given in 
figure 10.5 as the ratio of RMSE for the Theil estimator to the RMSE of the regression 
estimator (Hirsch et al., 1991).  A value larger than 1 shows an advantage to OLS;  smaller than 
1 indicates the Theil estimate to be superior.  For the larger sample size (n=36) the OLS 
estimator was more efficient (by less than 10 percent) when the data are not mixed and 
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therefore normal.  With even small amounts of mixtures the Theil estimator quickly becomes 
more efficient.  At a 20 percent mixture the Theil estimator was almost 20 percent more 
efficient.  When the sample size was very small (n=6, smaller than typically used in a case study), 
efficiencies of the two methods were virtually identical. 

These results reinforce that when the data or their transforms exhibit a linear pattern, constant 
variance and near-normality of residuals, the two methods will give nearly identical results.  The 
advantages of familiarity and availability of diagnostics, etc. favor using OLS regression.  
However, when residuals are not normally distributed, and especially when they contain outliers, 
the Kendall method will produce a line with greater efficiency (lower variability and bias) than 
does OLS.  Only small departures from normality (not always sufficient to detect with a test or 
histogram of residuals) favor using a robust approach.  Certainly one should check all outliers 
for error, as discussed in Chapter 1.  Do these represent a condition different from the rest of 
the data?  If so, they may be the most important points in the data set.  Perhaps another 
transformation will make the data more linear and residuals near-normal.  But outliers cannot 
automatically be deleted, and often no error can be found.  Robust methods like Kendalls or 
weighted least squares (discussed in sections 10.3 and 10.4) provide protection against 
disproportionate influence by these distinctive, but perhaps perfectly valid, data points. 

For analysis of a small number of data sets, detailed searches for transformations to meet the 
assumptions of OLS are feasible.  OLS is particularly informative in more complex applications 
requiring incorporation of exogenous effects using multiple regression (see Chapter 11).  Cases 
aren't unusual, however, where no power transformations can produce near-normality due to 
heavy tails of the distribution.   Perhaps the two greatest uses for Kendall's robust fit are 1) in a 
large study where multiple variables are tested for linear fits at multiple locations without the 
capability for exhaustive checking of distributional assumptions or evaluations of the sensitivity 
of results to outliers, and  2) by practitioners not trained in residuals plots and use of 
transformations to stabilize skewness and heteroscedasticity.  A third use is for fitting lines to 
data which one does not wish to transform.  
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Figure 10.2.  Two normal distributions, the first with mean = 10 and standard deviation = 1;  

the second with mean = 11 and standard deviation = 3   
(from Hirsch et al., 1991). 
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Figure 10.3.  A mixture of data from distribution 1 (95 percent) and distribution 2 (5 percent) 

shown in figure 10.2  (from Hirsch et al., 1991).   
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Figure 10.4.  A mixture of data from distribution 1 (80 percent) and from distribution 2 (20 

percent) shown in figure 10.2  (from Hirsch et al., 1991).   
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Figure 10.5.  Relative efficiency of the Theil slope estimator as compared with the OLS slope.  

Efficiency is the ratio of the Theil RMSE to the OLS RMSE, expressed as a function of 
population mixture and record length  (from Hirsch et al., 1991).   
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Example 2 
Figure 10.6 shows an OLS and Kendall-Theil fit to trends in total phosphorus concentrations 
from 1975 to 1989 in the St. Louis R. at Scanlon, MN.  The outliers are accurate values from 
floods, and therefore cannot be ignored or deleted.  The question is whether there is a significant 
linear trend in concentration over this 14 year period.  Here linear fits of concentration versus 
time are used to test for trend (see Chapter 12 for more on trend tests).  The OLS slope is 
affected by the outliers present.  Although the magnitude of the OLS estimate is similar to the 
Theil slope, the OLS slope does not test as significantly different from zero (p=0.43).  This is 
due to inflation of the standard error by outliers in violation of the assumed normality of 
residuals.  The Theil slope is highly significantly different from zero (p<0.0001).  The Kendall-
Theil line is not dependent on assumptions of normality which the data strongly violate. 
 
10.1.3   Test of Significance 
The test for significance of the Kendall-Theil linear relationship is the test for H0: τ = 0.  This 
involves computation of Kendall's S statistic (equation 8.1 of Chapter 8).  For n>10, the large 
sample approximation (equation 8.3 of Chapter 8) may be used.  The Theil slope estimator b1

^   is 
closely related to Kendall's S and τ in the following ways.   
 1.  S is the sum of the algebraic signs of the possible pairwise slopes. 
 2.  If the amount ( ˆ b 

1
X) is subtracted from every Y value, the new Y values will have an S 

and τ very close to zero, indicating no correlation.   

If X is a measure of time, as it is for a trend test, subtracting ( ˆ b 
1
X) yields a trend-free version of 

the Y data set. 
 

 
Figure 10.6.  Total phosphorus concentrations with OLS and Kendall-Theil fitted lines for the 

St. Louis River at Scanlon, MN, 1975-1989. 
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Example 1, cont. 
For the example 1 data set, the test of significance is computed as follows.  S equals the sum of 
the signs of pairwise slopes already computed.  There are n(n−1)/2 =21 slopes, 20 of which are 
positive and 1 negative, so that S = 20−1 = 19.  Tau = 19/21 = 0.90.  Using table B8 of the 
Appendix due to the small sample size, the exact two-sided p-value for an S of 19 and n=7 is 
2•0.0014 = 0.003.  (Inappropriately using the large sample approximation for such a small data 
set, the approximate p-value is 0.007.)  Thus Y is significantly related to X in a linear fashion. 
 
10.1.4   Confidence Interval for Theil Slope 
Confidence intervals may be computed for the Theil slope b1

^   with procedures parallel to those 
used for other Hodges-Lehmann type estimators of earlier chapters.  As before, the tabled 
distribution of the test statistic, in this case table B8 for the exact Kendall's test statistic or a table 
of standard normal quantiles for the large-sample approximation, is entered to find upper and 
lower limits corresponding to critical values at one-half the desired alpha level.  These critical 
values are transformed into the ranks corresponding to data points at the ends of the confidence 
interval.   
 
For small sample sizes, table B8 is entered to find the critical value Xu having a p-value nearest 
to α/2.  This critical value is then used to compute the ranks Ru and Rl corresponding to the 
slope values at the upper and lower confidence limits for b1

^  .  These limits are the Rlth ranked 
data points going in from either end of the sorted list of N = n•(n−1)/2 pairwise slopes.  The 
resulting confidence interval will reflect the shape (skewed or symmetric) of the original data.  
  

 Ru =  
(N + Xu )

2   [10.3] 

 

 Rl =  
(N - Xu )

2    + 1 [10.4] 

 
Example 1, cont. 
The N=21 possible pairwise slopes between the n=7 data pairs for example 1 were: 
 −9, +1, +1, +1 +1 +1 +1 +1 +1 +1 +1  
 +1 +1 +1 +1 +1 +3 +3.5 +4.3 +6 +11. 
b1
^   was the median or 11th largest slope.  To determine a confidence interval for b1

^   with  
α ≅ 0.05, the tabled critical value Xu nearest to α/2= 0.025 is found to be 15 (p=0.015).  The 
rank Ru of the pairwise slope corresponding to the upper confidence limit is therefore 

 Ru =  
(21 + 15)

2    =  18  for N=21 and Xu=15. 

The rank Rl of the pairwise slope corresponding to the lower confidence limit is 

 Rl =  
(21 - 15)

2   +1 =  4. 
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So an α = 2•0.015 = 0.03 confidence limit for b1
^   is the interval between the 4th and 18th 

ranked pairwise slope (the 4th slope in from either end), or 
 +1≤ b1

^   ≤ +3.5 . 
The asymmetry around the estimate b1

^  = 1 reflects the low probability that the slope is less than 
1, based on the data. 
 
When the large-sample approximation is used, the critical value zα/2 from a table of standard 
normal quantiles determines the upper and lower ranks of the pairwise slopes corresponding to 
the ends of the confidence interval.  Those ranks are 
 

 Ru =  
N + z

α / 2

n(n −1)(2n + 5)
18

2
 +1 [10.5] 

 

 Rl =  
N − z

α / 2

n(n −1)(2n + 5)
18

2
 [10.6] 

 

 
As an example, for n=20 pairs of data there would be N=(20)(19)/2 = 190 possible pairwise 
slopes.  b1

^   is the average of the 95th and 96th ranked slopes.  For a 95 percent confidence 
interval on b1

^  ,  zα/2 = 1.96  and  

 Ru =  
190 + 1.96 • 950

2   +1 = 126.2 

 Rl =  
190 - 1.96 •  950

2    = 64.8 

the 64.8th ranked slope from either end.  Rounding to the nearest integer, the 126th and 65th 
ranked slopes are used as the ends of the α=0.05 confidence limit on b1

^  . 
 
Further discussion of these equations is in Hollander and Wolfe (1973), pp. 207-208. 
 

10.2   Alternative Parametric Linear Equations 

Hirsch and Gilroy (1984) described additional methods for fitting straight lines to data whose 
slopes and intercepts are computed using moment statistics.  These lines differ from the OLS 
line of Chapter 9, and are more appropriate than that line for certain situations.  For example, 
when X is to be predicted from Y using OLS, the resulting line differs from the OLS line 
predicting Y from X.  This has implications for calibration.  When many predictions are to be 
made and the distribution of those predictions is important (percentiles or spreads are of 
interest, as well as the mean), the Line of Organic Correlation (LOC) should be used instead of 
OLS.  When describing a functional relationship between two variables without trying to predict 
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one from the other, LOC is again more appropriate than OLS.  When some geographic 
trajectory is to be computed, the Least Normal Squares (LNS) line should be used. 

10.2.1   OLS of X on Y 
The OLS regression of Chapter 9 considered the situation where a response variable Y was to be 
modeled, enabling estimates of Y to be predicted from values of an explanatory variable X.  
Estimates of slope and intercept for the equation were obtained by minimizing the sum of 
squares of residuals in units of Y.  Thus its purpose was to minimize errors in the Y direction 
only, without regard to errors in the X direction.  The equation may be written as: 

 Yi = Y + r
s

y

s
x

(X
i
−X )  [10.7] 

where r is Pearson's linear correlation coefficient, sy and sx are the standard deviations of the Y 
and X variables, and (r sy/sx) = (r SSy / SSx ) = b1, the OLS estimate of slope (see Chapter 
9).  Assuming the linear form of the model is correct and that X and Y are measured without 
error, OLS will lead to estimates of Yi for any given Xi which are unbiased and have minimum 
variance.  This means that OLS is the preferred method of estimating a single value of Y given a 
value of X, where X is measured without error.   

In contrast, situations occur where it is just as likely that X should be predicted from Y, or that 
the two variables are equivalent in function.  One classic example is in geomorphology, where 
relations between the depth and width of a stream channel are to be related.  It is as reasonable 
to perform a regression of depth on width as it is of width on depth.  A second example is the 
relation between dissolved solids concentration and "residue on evaporation" or ROE, an 
alternate measure of the amount of dissolved material in a water sample.  Either could be chosen 
to model as a function of the other, and usually a description of their relationship is what is of 
most interest.  

It is easy to show, however, that the two possible OLS lines (Y on X and X on Y) differ in slope 
and intercept.  Following equation [10.7], reversing the usual order and setting X as the response 
variable, the resulting OLS equation will be  

 Xi = X + r
s

x

s
y

(Y
i
−Y )  [10.8] 

which when solved for Y becomes 

 Yi = Y +
1

r

s
y

s
x

(X
i
−X )  [10.9] 

Let b1' = (1/r • sy/sx), the slope of X on Y re-expressed to compare with slope b1.  Contrasting 
[10.7] and [10.9], the slope coefficients b1≠ b1'.  Thus the two regression lines will differ unless 
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the correlation coefficient r equals 1.0.  In figure 10.7, these two regression lines are plotted for 
the dissolved solids and ROE data of Appendix C12. 

The choice of which, if either, of the OLS lines to use follows a basic guideline.  If one is to be 
predicted from the other, the predicted variable should be assigned as the response variable Y.  
Errors in this variable are being minimized by OLS.  However, when only a single line 
describing the functional relationship between the two variables is of interest, neither OLS line is 
the appropriate approach.  Neither OLS line uniquely or adequately describes that relationship.  
A different linear model having a unique solution should be used instead -- the line of organic 
correlation. 

10.2.2   Line of Organic Correlation 
The line of organic correlation (LOC) was proposed as a linear fitting procedure in hydrology by 
Kritskiy and Menkel (1968) and applied to geomorphology by Doornkamp and King (1971).  Its 
theoretical properties were discussed by Kruskal (1953).  The line also has been called the 
"geometric mean functional regression" (Halfon, 1985), the "reduced major axis" (Kermack and 
Haldane, 1950), the "allometric relation" (Teisser, 1948) and "Maintenance of Variance - 
Extension" or MOVE (Hirsch, 1982).  It possesses three characteristics preferable to OLS in 
specific situations: 

a) LOC minimizes errors in both X and Y directions. 
b) It provides a unique line identical regardless of which variable, X or Y, is used as 

the response variable, and 
c) The cumulative distribution function of the predictions, including the variance 

and probabilities of extreme events such as floods and droughts, estimates those 
of the actual records they are generated to represent. 
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Figure 10.7   Three straight lines fit to the same data. 

 



Alternative Methods for Regression 277 

 

The LOC minimizes the sum of the areas of right triangles formed by horizontal and vertical 
lines extending from observations to the fitted line (figure 10.8).  By minimizing errors in both 
directions it lies between the two OLS lines on a plot of Y versus X (see figure 10.7).  The slope 
of the LOC line equals the geometric mean of the Y on X and X on Y OLS slopes: 

 b1'' =   b1 b1'    =  sign[r] •  
sy
sx  

where b1'' is the slope of the LOC line 

 Yi  = b0'' + sign[r] •  
sy
sx   • Xi  [10.10] 

So the correlation coefficient in the equation for OLS slope is replaced by the algebraic sign  
(+ or −) of the correlation coefficient with LOC.  The magnitude of the LOC slope b1''  is 
determined solely by the ratio of standard deviations sy/sx.  Performing LOC of X on Y will 
give the identical line as does the LOC of Y on X . 

LOC is therefore used for two purposes, corresponding to the three above attributes: 
 a , b) to model the correct functional relationship between two variables, both of which 

are measured with error. 
 c) to produce a series of estimates Ŷ i from observed Xi whose distributional 

properties are similar to those expected had the Yi been measured.  Such 
estimates are important when the probability distribution (variance or percentiles) 
of the estimates, and not just the mean or an individual estimate, are to be 
interpreted and used. 

Examples of the first use for LOC include the geomorphic relationships cited above, 
describing the relation between bioaccumulation and octanol-water partition coefficients 
(Halfon, 1985), or other applications where the slope is to take on physical meaning rather 
than interest in prediction of values of one variable. 

One example of the second use for LOC is the extension or fill-in of missing observations.  
This use for record extension has been the major application of LOC to water resources thus 
far.  As an example, suppose two nearby sites overlap in their gaged record.  The streamflow 
for the site with the shorter record is related to that at the longer (the "base") site during the 
overlap period.  Using this relationship, a series of streamflow data at the shorter site is 
estimated during an ungaged period based on flows at the base site.  If the OLS equation 
were used to estimate streamflows, the variance of the resulting estimates would be smaller 
by a factor of R2 than it should be.  OLS reduces the variance of estimates because the OLS 
slope is a function not only of the ratio of the standard deviations sy/sx, but also of the 
magnitude of the correlation coefficient r.  Only when |r| = 1 do OLS estimates posses the 
same variance as would be expected based on the ratio of variances for the original data.  To 
see this more clearly, take the extreme case where r=0, and there is no relationship between 
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Y and X.  The slope then equals 0, and all OLS estimates would be identical and equal to Y .  
The variance of the estimates is also zero.  As R2 decreases from 1 to 0, the variance of OLS 
estimates is proportionately reduced.  This variance reduction is eliminated from LOC by 
eliminating the correlation coefficient from the equation for slope.  The estimates resulting 
from the LOC have a variance in proportion to the ratio of the variances sy2/sx2 from the 
original data.   

When multiple estimates are to be generated and statements made about probabilities of 
exceedance, such as flood-flow probabilities, probabilities of low-flows below a water supply 
intake, or probabilities of exceeding some water-quality standard, inferences are made which 
depend on the probability distribution of the estimated data.  In these cases LOC, rather than 
OLS, should be used to generate data.  OLS estimates would substantially underestimate the 
variance because they do not include the variability of individual values around the regression 
line (Hirsch, 1982).  As a consequence, the frequency of extreme events such as floods, 
droughts, or exceedance of standards would be underestimated by OLS. 

Variations on using LOC for hydrologic record extension have been published by Vogel and 
Stedinger (1985) and Grygier et al. (1989). 

All three of the lines discussed thus far have two identical characteristics.  They are invariant to 
scale changes, so that changing the Y or X scale (from English to metric units, for example) will 
not change the estimates of slope or intercept after re-expressing them back into their original 
scales.  However, if the X and Y axes are rotated and lines re-computed, the second set of  
estimates will differ from the first following re-expression into the original orientation.  This 
second property is not desirable when the original axes are of arbitrary orientation, such as for 
latitude and longitude.  The line discussed in the next section can be fit when invariance to 
spatial orientation is desired. 
 

10.2.3   Least Normal Squares 
Least normal squares is the line which minimizes the squared distances between observed points 
and the line, where distances are measured perpendicular (normal) to the line.  The slope can be 
expressed as in figure 10.8 
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Method Minimizes: Slope Scale Change Rotation 
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Figure 10.8   Characteristics of four parametric methods to fit straight lines to data 
 

An appealing property of LNS is its invariance to rotation of axes.  This is desirable when the 
coordinate system in which the data are measured is arbitrary.  The most common example of 
this is where X and Y are physical locations, such as latitude and longitude.  If the axes are 
rotated, the X and Y coordinates of the data recomputed, and the LNS line recomputed, it will 
coincide exactly with the LNS line for the data prior to rotation.  This is not so with OLS or 
LOC.  However, the LNS line is not invariant to scale changes.  The LNS line expressed in any 
scale will differ depending on the scale in which the calculations were made.  For example, the 
LNS line relating concentration in mg/L to streamflow in cubic feet per second will differ from 
the LNS line for the same data using  streamflow in cubic meters per second.  This attribute 
makes LNS poorly suited to describe the relation between most common water resources 
variables.  Where LNS is appropriate is in computing trajectories minimizing distances between 
observed points in space.  Kirby (1974) thus used LNS to compute the straight line traverse of a 
ship from a set of coordinate locations taken along its trip. 

−A +
b =
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10.2.4  Summary of the Applicability of OLS, LOC and LNS 
To summarize the application of each of the above parametric procedures: 
1. To estimate individual values of one variable from another variable, use OLS (assuming 

the data are linear and homoscedastic).  This holds regardless of causality, and regardless 
of whether there are errors in measurement of the explanatory variable. 

2. To estimate multiple values of one variable from another variable in order to make 
statements about the probability distribution, use LOC.  This preserves the 
characteristics of the entire distribution, avoiding the downward bias in variance of the 
OLS estimates. 

3. To describe the functional relationship between two variables with the primary interest 
in the slope coefficient, use LOC.   

4. To determine the geographic trajectory which minimizes the differences from observed 
data, use LNS.   

 

10.3   Weighted Least Squares 

Data may exhibit a linear pattern yet have non-
constant variance (heteroscedasticity -- see 
figure 10.9).  Corrections for non-constant 
variance involving a power transformation will 
often alter the linear pattern to one which is 
curved.  Also, transformation into differing 
units may not be desirable, due to 
retransformation bias of the estimates (see 
Chapter 9).  Finally, the data may have known 
inherent differences in their variances, such as 
when means or other  summary statistics based 
on unequal-sized data sets are used as the 
explanatory variable.  When the constant  

 
 
ei

0

ˆ Y 
i

Figure 10.9   Heteroscedastic data. 

variance assumption of OLS is violated, an alternate method called weighted least squares (WLS) 
should instead be employed. 

With WLS, each squared residual (Yi − Ŷ i)2 is weighted by some weight factor wi in such a way 
that observations with greater variance have lesser weight.  Thus "less reliable" observations 
have less influence on the resulting linear equation than "more reliable" observations.  The fitted 
WLS equation minimizes the squares of the weighted residuals.  To evaluate whether this 
weighting has corrected for heteroscedasticity, a weighted residuals plot should be drawn.  In 
this plot the weighted residuals,  ei  wi    are plotted versus Ŷ i  wi  .  The pattern of 
weighted residuals can be interpreted as with any other residuals plot. 
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One common use of WLS in water resources arises when basin characteristics are used to 
estimate flood percentiles (Tasker, 1980).  For example, estimates of the 100-year flood at 
ungaged sites can be made from a log-log regression of sample estimates of 100-year floods for 
gaged sites within a region versus drainage area.  The flood flows used to construct the 
regression will have differing variances for different sites, depending on their record lengths n.  
Sample estimates based on longer records are more reliable, and will have lower variance, than 
for stations with less data.  Therefore estimates from longer records should be given a stronger 
effect on the regression line.  If all original observations are assumed to have constant variance 
σ 2, then the weights wi for the weighted regression will be proportional to the record lengths ni 
at each station.   

Further weighting could reflect any spatial correlation between the sites.  This is called 
generalized least squares, and is applied to hydrology by Stedinger and Tasker (1985).  An 
example of weighting in response to differential sampling within a stratified sampling design is 
given by DuMouchel and Duncan (1983). 

A more empirical method of weighting occurs by setting weights inversely proportional to the 
sample variance of the response variable at that location.  This variance is rarely known ahead of 
time, so that weights are computed based on residuals from an ordinary least squares regression 
(OLS) in the following manner: 
1) OLS regression is computed for Y versus X.  Residuals are plotted against Ŷ , and 

nonconstant variance is seen. 
2) Observations with similar X's are grouped, and the variance of the observations in each 

group sy2 is calculated.  These variances are plotted versus Xi for each group. 
3) Assign sy2 to each observation in group i.  Weights wi = 1/sy2 . 
 
Weighted least squares can be computed using software for unweighted multiple regression by 
employing a data transformation Yi' = ci Yi , where each observation Yi is multiplied by the 
square root of the weight for that point (ci =  wi   =1/sy).  The Xi must also be weighted as 
Xi' = ci Xi.   A weighted intercept term must also be included as a new "variable" Ii', consisting 
of a vector of ci's, one per observation.  The transformed Yi' are then related by multiple 
regression to Xi' and Ii' using the "no intercept" option (the I' column is the weighted intercept).  
The resulting coefficients are the coefficients of the weighted least squares line. 
 
Example 3 
Total dissolved solids (TDS) from Appendix C12 are plotted versus time, and an increasing 
variance is seen (figure 10.10).  Regression of TDS versus time produces: 
 TDS = −1627 + 0.844•Time, t-statistic = 4.62 p = <0.001 
where Time is in years.  A residuals plot would also show increasing variance. 
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However, this equation puts undue emphasis on the more recent data, which have the largest 
variability.  The variability seems to increase after 1985, therefore the data are split into two 
periods, and the variance of TDS is computed separately for each period. 

 

 
Figure 10.10   TDS data with non-constant variance (heteroscedasticity). 

 
The variance for the pre-1985 period is 24.18, while after 1985 it is 71.80.  The reciprocal of 
these values is assigned as the weight function for each observation in the respective groups, and 
a weighted least squares regression is performed.  This results in: 
 TDS = −1496 + 0.778 • Time. t-statistic = 4.10 p = <0.001 
 

 
Figure 10.11   Weighted residuals plot of the TDS data. 

 
A plot of the weighted residuals versus predicted values is shown in figure 10.11.  The  
weighted residuals have constant variance.  Thus the weighted least squares line should be 
preferred to the unweighted line, because it more closely conforms to one of the assumptions of 
least squares regression -- constant variance of residuals. 
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10.4   Iteratively Weighted Least Squares 

OLS regression can be thought of as a "linear mean", with both desirable and undesirable 
properties similar to a mean.  One undesirable property is that outliers can "pull" the location of 
the line (estimates of slope and intercept) in their direction, much in the same fashion as the 
sample mean is affected by an outlier.  The resulting residuals corresponding to the outlying 
point may be small, making that point difficult to discern as unusual.  Such outliers must be 
detected using influence statistics (see Chapter 9).  In addition to detecting outliers, it may be 
desirable to limit their influence on the regression line, similar in objective to the Kendall-Theil 
method given in section 10.1.  A second method for doing so, somewhat analogous to a 
trimmed mean, is a robust regression method called iteratively weighted least squares (IWLS).  
Unlike Kendall-Theil, IWLS is applicable in the multiple regression context. 
 
The goal of any robust regression is to fit a line not strongly influenced by outliers.  This leaves 
large residuals for the outliers, but a better fit to most other points.  IWLS produces models 
similar to OLS when the underlying residuals distribution is normal, where OLS would have 
been reasonable to use.  Alternate methods of robust regression to IWLS include "least median 
of squares" and "least absolute value" (Rousseeuw and Leroy, 1987), both of which minimize a 
more robust measure of error than least squares. 

With IWLS, weights are derived from the data.  An OLS is first computed -- all weights are 
initially set equal to one.  Points nearest the OLS line are then given weights near one, while 
points further away have lesser weight.  A weighted least squares is computed, and the process 
repeated.  After about two iterations the weights become stabilized, and the final iteratively 
weighted least squares line results.   
 
There are several weight functions which have been used to compute weights.  A common and 
useful one is the bisquare weight function (Mosteller and Tukey, 1977): 

wi = 


  (1 - ui2) 2 for |ui| ≤ 1

0 for |ui| > 1
  

 

where  ui  = 
Yi  - Ŷi 

c•S    

 c  = constant, and 
 S  = some robust measure 

u i

iw

0

0.5

1

0-1 1
 

Figure 10.12   Bisquare Weight Function 
     of spread of the residuals (Yi  − Ŷ i). 
The purpose of the divisor c•S is to make ui invariant to scale changes. 
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Common  choices for c and S are 
a. c = 3 and  S = the IQR of the residuals.  For a normal distribution IQR ≅ 4/3 σ, so that 

when c = 3,  c•S ≅ 4σ.  This is a margin sufficiently wide to include most or all 
observations when the distribution is near-normal, and yet protect against outliers when 
the distribution is markedly non-normal. 

b.  c = 6 and S = the MAD, the median absolute deviation from the previous line, or  
median |residuals|.  Again c•S ≅ 4σ  (MAD ≅ 2/3 σ for a normal distribution). 

 
Note that since the sample standard deviation is strongly distorted by outliers, it would be a poor 
choice as the measure of spread S.  This highlights the failing of all parametric tests for outliers:  
if the criteria for declaring a value as an outlier is strongly influenced by those same outliers, it 
will be inflated to the point of declaring too few data as outliers.  Either the MAD or IQR are 
more appropriate than the standard deviation for this purpose. 
 
After calculating the IQR or MAD of residuals from an OLS, the first set of weights are 
produced.  These weights are used in the first weighted least squares, from which new residuals 
are used to compute new weights.  The process is repeated until the weights stabilize -- in most 
cases only two iterations are required. 
 
Example 3 
TCE concentrations were measured in wells from the Upper Glacial Aquifer, Long Island, NY., 
and related to population density (Eckhardt et al., 1989).  Below are listed the percent of wells 
with TCE concentrations above the detection limit (%DET), by population density of the 
surrounding land (POPDEN).  Compute the robust regression equation (2 iterations) to predict 
detection percentage from population density. 
 %DET 0.64 4.80 10.20 22.50 25.00 25.00 67.00 38.00 31.30 
 POPDEN 1 2 3 5 6 8 9 11 13 
 

 
Figure 10.13   TCE concentrations on Long Island (Eckhardt, 1989) 
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The OLS (unweighted) regression equation is   %DET = 2.00 + 3.56 • POPDEN 
with a t-statistic of 2.86.  This line is pulled up by the one outlier at a population density of 9 
which doesn't fit the rest of the data very well (figure 10.13).  The residuals ei from this OLS line 
are used to establish bisquare weights for the first WLS line.   
ei: −0.414 −0.345 −0.191 0.199 0.120 −0.404 2.478 −0.253 −1.545 
wi:  0.929 0.945 0.982 0.978 0.992 0.913 0.000 0.971 0.326 
 
The outlying point is sufficiently far from the line that it receives a weight of zero.  The first 
weighted regression equation is then   %DET = 0.93 + 3.23•POPDEN, with a  
t-statistic of 6.93.  This is shown as "1st WLS" in figure 10.13.  Again, residuals are computed 
from this equation, and a new set of weights computed:  
wi: 0.945 0.970 0.999 0.872 0.903 0.986 0.000 0.989 0.489 
 
The 2nd iteration weighted regression equation is then  %DET = 1.24 + 3.10•POPDEN, 
similar to the previous iteration, with a t-statistic of 6.63.  Figure 10.13 shows this line as "2nd 
WLS".  The residual for the outlying point remains large, while the line fits the majority of the 
data quite well.  This is the objective of a robust regression. 
 

10.5   Smoothing 
 
Smoothing differs in purpose and form from the previous methods.  It is an exploratory 
technique, having no simple equation or significance tests associated with it.  The most common 
smooths estimate the center of the data -- the conditional mean or median of Y as X changes.  
The lack of an equation is a strength in the sense that a smooth is not constrained by some prior 
assumption as to the mathematical function of the relationship.  Rarely are there theoretical 
grounds for choosing one function over another in modeling Y versus X.  For large data sets it is 
common to visually identify departures from a simple function which could only be modelled by 
incorporating several high order terms.  This can cause instability near or beyond the range of 
the data.  The shape of a smooth is not specified a priori, but is determined solely by the data. 
 
Middle smooths allow the data to dictate the location of a smooth curve which goes through the 
middle of the data.  They are used to highlight trends or patterns in the data on a scatterplot.  
These patterns are often difficult to see.  The human eye only poorly follows the central 
tendency of a scatterplot;  the range of data dominates visual impression.  Adding a line through 
the middle draws attention to the center of the plot, aiding judgement of whether the pattern is 
linear, indicating where breaks in slope occur, etc.    

10.5.1   Moving Median Smooths 
The simplest smooths are moving averages or medians.  Data are smoothed by calculating the 
mean or median of a portion of the total data within some 'window' of influence around a given 
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X0.  This is repeated while setting X0 equal to nearly every X value in the data set.  As before, 
outliers will influence moving averages (means) more strongly than medians, so that moving 
averages are more erratic than medians in the vicinity of outliers.  Moving medians therefore are 
more resistant to outliers than are moving averages.  

Suppose a 5-point moving median is to be computed.  A 'window' of width equal to 5 data 
points is begun at the left of the X-Y plot.  The median of the 5 Y values within the window is 
computed, and plotted at the center of the window (X0 = 3rd point from the left) to form the 
first value of the smooth.  Data outside the window have no influence on the smoothed value.  
The X window is shifted to the right by one data point, a new median of the 2nd through 6th 
points calculated, and this value plotted at the new X0 = 4th point from the left.  This shifting 
and computation progressively continues through the final window, composed of the rightmost 
5 points.  All medians are then connected by straight lines to form the moving-median smooth. 

Figure 10.14 shows an 11-point moving median smooth for sand concentrations in the Colorado 
River at Lees Ferry, Arizona.  Moving medians are convenient for hand computation, but 
produce a "rough" pattern unless the window size is quite large.  Large windows result in the 
undesirable characteristic that data far from X0 influence the resulting value as much as data 
nearby.  To avoid this, more complex smoothing routines are now performed by computer.   

 

 
Figure 10.14   11 point moving median of sand concentrations in the Colorado River 

at Lees Ferry, Arizona, 1949-1970. 
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Figure 10.15   11 point moving median and LOWESS smooths of the Lees Ferry data 

 

These allow the data nearer the center of the window to influence the smoothed value more 
than those further away.  They also allow the smoothness of the final fit to be adjusted to the 
needs of the data analyst.  One of the most flexible and useful smoothing algorithms is called 
LOWESS.  In figure 10.15 the 11 point moving median smooth is compared to a LOWESS 
smooth for the Lees Ferry data. 
 
10.5.2   LOWESS 
LOWESS, or LOcally WEighted Scatterplot Smoothing (Cleveland et al., 1979) is 
computationally intensive.  It involves fitting at least 2n weighted least squares equations.  At 
every X0, a Ŷ  is computed from a WLS regression whose weights are a function of both the 
distance from X0 and the magnitude of the residual from the previous regression (an iterative 
procedure).  The robust regression weights wi are computed by  
 wi = wxi • wri  
where wxi, the distance weight, is a function of the distance between the center of the window 
Xi and all other X.  The residuals weight wri is a function of |Yi −Ŷ i|, the distance in the Y 
direction between the observed Yi and the value predicted from the previous WLS equation.  A 
point will receive a small weight, and therefore have little influence on the smoothed Ŷ , if it is 
either far from the center of the window in the X direction or has a large residual in the Y 
direction.  The measure of how quickly weights decrease as distances increase in the X and Y 
directions is determined by the weight function.  For a point at (Xi,Yi), the bisquare weight is 
determined as 
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where dx = half width of window  = mth largest |Xi − X| 
  m = Nf 
  N = sample size 
  f = smoothness factor specified at outset. 
 
Smoothness of LOWESS is varied by altering the window width, as controlled by the 
smoothness factor f (figure 10.16).  As f is increased, the window size is increased, and more 
points influence the magnitude of Ŷ .  Selection of an appropriate f is determined subjectively 
according to the purpose for which the smooth is used. 
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Figure 10.16   Three smooths of the same data with differing smoothness factors f. 

 
 
Three examples of situations in which LOWESS smooths greatly aid data analysis are: 
1. To emphasize the shape of the relationship between two variables on a scatterplot of 

moderate to large sample size.  Adding a line through the middle draws attention to the 
center of the plot, aiding judgement of how the two variables are related. 

2. To compare and contrast multiple large data sets.  Plotting all data points with differing 
symbols per group does not provide the clarity necessary to distinguish similarities and 
differences between groups.  Instead, computing and plotting LOWESS smooths without 
the data may give great insight into group characteristics.  For example, Welch et al. (1988) 
used LOWESS to describe the relationship between arsenic and pH in four physiographic 
regions of the Western United States (figure 2.26 in Chapter 2).  Thousands of data points 
were involved; a scatterplot would have shown nothing but a blob of data.  The smooths 
clearly illustrated that in three regions arsenic concentrations increased with increasing pH, 
while in the fourth no increase was observed.  Smooths were also used by Schertz and 
Hirsch (1985) to illustrate regional patterns in atmospheric precipitation chemistry.  They 
used one smooth per station to display simultaneous changes in sulfate and other chemical 
concentrations occuring over broad regions of the country (figure 10.17).  These 
relationships would have gone unnoticed using scatterplots -- the underlying patterns would 
have been obscured by the proliferation and scatter of the data. 

 



290 Statistical Methods in Water Resources 

 

 
Figure 10.17   Smooths of sulfate concentrations at 19 stations, 1978-83 

(from Schertz and Hirsch, 1985). 

3. To remove the effect of an explanatory variable without first assuming the form of the 
relation (linear, etc.).  In situations equivalent to multiple regression where several variables 
may affect the magnitude of a response variable (Y), removal of one variable's (X) effects 
may be accomplished by computing a LOWESS smooth of Y versus X and using the 
residuals from the smooth in subsequent analyses.  An example is when removing the effects 
of discharge or precipitation volume from chemical concentration data prior to performing a 
trend analysis (see Chapter 12).  LOWESS allows the analyst to be unconcerned as to 
whether the relation between Y and X is linear or nonlinear.  In contrast, linearity would 
have to be established prior to using regression. 
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Two additonal lines are sometimes plotted along with the LOWESS middle smooth.  These are 
upper and lower smooths (Cleveland and McGill, 1984b), which function as smoothed versions 
of upper and lower quartiles of the conditional distribution of Y as a function of X.  They are 
constructed by computing additional LOWESS smooths on the positive residuals and negative 
residuals, respectively, from the middle LOWESS smooth.  These values are then added to the 
middle smooth, and connected with straight line segments.  Upper and lower smooths are useful 
for showing how the spread and/or symmetry of the conditional distribution of Y changes as a 
function of X.  Figure 10.18 is one example.  It shows how the spread of nitrate concentrations 
changes with depth for groundwaters under Long Island, NY.  The spread or "running IQR" is 
indicated by the distance between the upper and lower smooths, shown as dashed lines in the 
plot. 

   
Figure 10.18   Nitrate concentrations versus depth in the upper Glacial Aquifer, Long Island NY  

(data from Eckhardt et al., 1989).  
 

10.5.3   Polar Smoothing 
Polar smooths (Cleveland and McGill, 1984b) are variations on lowess smooths.  They are 
polygons describing the two-dimensional locations of data groups on a scatterplot (see figure 
2.28 in Chapter 2).  Comparisons of differences in location of several data groups is made much 
easier by comparing polar smooths rather than comparing symbols for each data point on a 
scatterplot, as in figure 2.27.  Polar smooths are used as a visual 'discriminant analysis' in two 
dimensions. 
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To compute a polar smooth, first center the data at the median of X and median of Y.  All data 
points are then described in terms of their angle and radius from this center, placing the data 
into polar coordinates.  A lowess smooth is computed while in polar coordinates, and then is re-
transformed back into original units.  The smooth, which while in polar coordinates had 50 
percent of the data below it, upon re-transformation envelops those same 50 percent within it  
An analogous 'upper smooth' which in polar coordinates had 75 percent of the data below it 
becomes an 'outer smooth' containing 75 percent of the data in original units. 
 
Polar smooths can be a great aid to exploratory data analysis.  They are not constrained a priori 
to be an ellipse or any other shape, but take on the characteristics of the data.  This can lead to 
new insights difficult to see by plotting the original observations.  For example, in figure 2.28 
smooths enclosing 75% of the conductance versus pH data for three types of upstream land use 
are plotted.  The irregular pattern for the smooth of abandoned mine data suggests that two 
separate subgroups are present, one with higher pH than the other. 
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Exercises 
 
10.1 For the data below, 
 a)  compute the Kendall slope estimator, 
 b)  compute Kendall's τ, 
 c)  compute the non-parametric regression equation. 

d)  compute the significance level of the test. 
  Y  10 40 30 55 62 56 
  X   1 2 3 4 5 6 
 
 
10.2  One value has been altered from the 10.1 exercise.  Again compute the slope estimate, 

intercept, τ and significance level.  By how much have these changed in response to the 
one (large) change in Y?  Also compute a 95% confidence interval on the slope estimate. 

  Y  10 40 30 55 200 56 
  X   1 2 3 4 5 6 
 

10.3 Compute the robust IWLS equation (2 iterations) for the Exercise 10.2 data. 
 

10.4 Williams and Wolman (1984) relate the lowering of streambed elevation downstream of 
a major dam to years following its installation.  Calculate a linear least-squares regression 
of bed lowering (L) as the response variable, versus years (Yrs) as the explanatory 
variable, and compute its R2.  

  Yrs Lowering (m) Yrs    L   Yrs    L  
 0.5  −0.65 8  −4.85 17 −5.05 
 1 −1.20 10 −4.40 20 −5.10  
 2 −2.20 11 −4.95 22 −5.65 
 4 −2.60 13 −5.10 24 −5.50 
 6 −3.40 15 −4.90 27 −5.65  

Calculate a 5-point moving median smooth of the data.  Plot the smooth and regression 
line along with a scatterplot of the data.  Describe how well each represents the data. 

 



294 Statistical Methods in Water Resources 

 

10.5 Record Extension 
Monthly discharges for September at two rivers are given in Appendix C13 (units of 
million cubic meters per month).  The most recent 20 years are available for "Short" 
(ignore the data in italics), and 50 years at "Base".  The two sites are close enough that 
the data are reasonably well correlated with each other.  Using the 20 years of joint 
record and the additional 30 years of record at "Base", produce a 50-year-long record at 
"Short" for use in a water supply simulation model.   

Short

Base

Year
0 30 50

you estimate

 

First use regression and then repeat the process using the LOC.  Take the extended 
record (the 30-year estimates plus the known 20 years) produced by the two methods at 
"Short" and plot them to illustrate the differences (a boxplot or probability plot are 
recommended).  Compare these to each other and to a plot of the flows which actually 
occurred (the true flows are given in italics in Appendix C13).  Which technique is 
preferable if the objective is to estimate water supply shortage risks?  Which technique is 
preferable if the objective is to estimate the true September flow in each year?  Quantify 
your conclusion about this. 

10.6 The pulp liquor waste contamination of shallow groundwater (see Exercise 7.1) is 
revisited.  Now the relationship between pH and COD in samples taken from the 
piezometers is of interest.  Calculate a straight line which best describes the relationship 
between these two chemical constituents.  Should this line be used by the field 
technician to predict COD from the pH measured on-site? 

 pH COD pH COD pH COD 
 7.0 51 6.3 21 8.4 283 
 7.2 60 6.9 17 7.6 2170 
 7.5 51 7.0 34 7.5 6580 
 7.7 3600 6.4 43 7.4 3340 
 8.7 6900 6.8 34 9.3 7080 
 7.8 7700 6.7 43 9.0 10800 




